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In an effort to model cortical networks and emulate higher-level brain function,
especially in the recognition, classification, and learning of spatio-temporal signals of the
kind occurring in natural and artificial settings, we have been investigating the dynamics of
anew class of networks composed of parametrically coupled bifurcation processing
elements. The spatio-temporal signals of particular interest to us are of the variety
produced by sensor arrays in radar, sonar and ATR as result of relative motion between the
sensor platform and the scattering object. The bifurcation processing elements in these
networks are logistic maps representing netlets or neuronal assemblies of the cortex.

In the preceding quarterly report evidence was presented in support of the hypothesis
that the basic functional unit in the cortex, the seat of higher-level brain function, maybe
mathematically modeled by a bifurcation processing element: a parametrically driven
noninvertible map on the unit interval such as the logistic map or the sine-circle map. Such
simplifying abstraction seems to capture functional attributes of cortical units as seen in
numerical simulations of a network of parametrically coupled bifurcation processing
elements. Specifically, a bifurcation processing unit is functionally complex in that it can
assume any of a number of qualitatively different functional modalities that include regular
(fixed-point, periodic (period-m)) and irregular (intermittant, chaotic) activity and can
bifurcate (rapidly switch) among them depending on the net input to the unit from other
units. The network studied is shown to exhibit behavior remarkably similar to that seen in
functional magnetic resonance imaging (fMRI) of brain function suggesting that it offers an
efficient tool for modeling and studying cortical dynamics and higher-level brain function.

Under extrinsic dynamic input the network studied shows input-specific isolated
clustering of activity analogous to the “hot-spots™ of activity revealed by fMRI of brain
activity of individuals subjected to sensory stimulus or engaged in mental activity
associated with solving an assigned cognitive task. '

Simulation results also predict that within the isolated active regions (hot-spots)
neuronal groups assume complex temporal structures that describe fixed-point, periodic,
quasi-periodic, intermittant, or chaotic orbits that serve apparently to further characterize the
input stimulus. Unfortunately the temporal resolution of fMRI is not sufficient to reveal
such temporal effects in actual observations. However other faster emergent functional
brain imaging techniques such as magnetoencephalography (MEG) employing arrays of
superconducting quantum interference devices (SQUIDS) or optical recoring techniques
may be of help in testing this prediction. Positive verification of this prediction could have
far reaching implications for brain modeling and help elucidate the role of such possible




temporal encoding in brain function furnishing thereby guidelines for the design of artificial
intelligent systems.

Interestingly the network studied is found to exhibit the above behavior only when
several salient or plausible attributes of thalamo-cortical organization and interaction were
incorporated in it. This included predominance of local connections, nonlinear (activity-
dependent) coupling between units, ability to accept extrinsic spatio-temporal input, and the
gradual turning over of control of network dynamics from extrinsic (sensor driven) control
to intrinsic (internal feedback) control.

We are continuing to examine the implications, predictive power, and applications of
this class of networks which because of their ability to classify spatio-temporal input
patterns are of interest in ATR and other areas such as speech processing. However most
of the effort during the period of this report was directed to the issue of hardware
implementation of networks of parametrically coupled logistic processing units that can
furnish the speed needed in practical applications. To this end we concentrated on
determining the plausibility of building logistic processing elements that can be used as
building block in hardware implementations of parametrically coupled networks of logistic
(bifurcation) processing units.

In previous work we have demonstrated that a programmable unijunction transistor
(PUT) circuit with cosinusoidal modulation of the PUT’s extinction voltage acts as a sine-
circle map which exhibits bifurcation between distinct modalities and route to chaos.
During the period of this report we attempted to answer the following question:

Can we obtain a spiking oscillator based on the PUT for which the

logistic map emerges as the relationship between consecutive spikes?

If this is possible, which modifications must be made in the original

circuit (i.e., the circuit that implements the sine-circle map bifurcating

processing element) in order to obtain this new dynamical behavior?

To date the work performed shows that by using the same kind of circuit employed
for the earlier implementation of the sine-circle map bifurcating processing element as well
as by appropriately changing the waveform of the periodic signal that is used to drive the
PUT, the logistic recursion can, in fact, be obtained. This finding is being examined
further because it seems to suggest that the PUT circuit with periodic modulation of
extinction voltage may be useful for producing arbitrary maps on the interval and thus
bifurcation processing elements with arbitrary desired properties by merely altering the
shape of the periodic modulation waveform. If confirmed this finding could be important
for dynamical computing employing timing or phase as variable and in encryption, secure

communications and secure transponders.




Also during this period N. Farhat (PI) participated in the following meetings:

1997 Annual Meeting of the Optical Society of America (OSA’97)

where he presented two papers:
1. “Neuroholography: a Possible Link Between Holography and Cortical Information

Processing.”
2.  “Biomorphic Networks for Invariant Feature Extraction.”
He also participated in the:

1997 International Symposium on Nonlinear Theory and Applications (NOLTA’97)

by presenting a paper entitled:
“Dynamical Networks with Bifrucation Processing Elements.” The paper was
published in the Symposium proceeding. (copy attached).
Also during this period past work done under this grant was referred to in a special news
report in Science under the title “A Subtler Silicon Cell for Neural Networks.” (copy

attached).




1997 International Symposium on Nonlinear
Theory and its Applications (NOLTA'97)
Honolulu, U.S.A., Nov.29 - Dec. 2, 1997

DYNAMICAL NETWORKS WITH BIFURCATION
PROCESSING ELEMENT

Nabil H. Farhat
University of Pennsylvania
Electrical Engineering Department
200 South 33rd Street
Philadelphia, PA 19104, USA
e.m. farhat@pender.ee.upenn.edu

Abstract: We introduce the concept of
parametricaily and nonlinearly coupled network
of bifurcation processing elements that can be
driven by static or dynamic input patterns. The
network is biologically inspired, computes with
all three-types of attractors and offers a unique
tool for the modeling and study of cortical
networks and higher-level brain function.

1. Introduction: There is considerable
evidence that the basic functional unit for higher-
level processing in the cortex is the metlet or
neuronal assembly (pool or group) [1}-{10]. This
evidence includes extensive analytical and
modeling work of netlets camied out in-
dependently by several groups in the past.

Nearly all that body of work points to the .

possibility that netlet dynamics, may be
adequately described by the discrete time
evolution of the activity A(n), which is the
percentage of neurons in the netlet active at time
n. Plots of A(n+1) vs. A(n) obtined under a
range of circumstances and assumptions are found
to invariably resemble a distorted version of the
quadratic or logistic map, a nonlinear iterative
map on the unit interval that exhibits complex
orbits depending on the value of a nonlinearity
(control or bifurcation) parameter [11]. The
similarity between the netlet’s return map
A(n+1) vs. A(n) and that of the logistic map has
also been noted by Harth [10] who also mentions
that complex and unpredictable sequences A(n)
were observed in some of their early simulations
of netlets suggesting that certain regions of the
netlet’s parameter space can lead to observation
of chaos in addition to the periodic and fixed
point modalities they usually observed.

In light of this evidence we have conjectured
that cortical networks can be modeled and
numerically studied in an efficient way by means
of parametric~'ly coupled populations of logistic
processing elements [12). To test this conjecture
we have studied the dynamics of such a network

when it is subjected to dynamic input: external
stimulus patterns that changed in time. The
networks we study differ from coupled map
lattices (CMLs), [13]-[14], in several ways: @
The networks described here employ parametric

rather than the diffuse coupling used in CMLs,

() The coupling is nonlinear representing the
possibility that the interaction between cortical
netlets can depend on the activity of the netlets
and on the number of active fibers connecting
one netlet to another, (c) Parametrically coupled
logistic nets (PCLNSs) can be externally driven by
dynamic or static patterns, or by composite
pattems that are partially time varying and
partially stationary, (d) In the PCLN, control
over network dynamics is gradually handed over
from initally entirely extrinsic control to
eventually entirely intrinsic control.  This
gradual transfer of control over network dynamics
from extrinsic to intrinsic is ‘biologically
plausible and is inspired by the remarkable
biophysical observation made by Freeman and
coworkers [15] regarding gradual disappearance of
the trace of a sensory stimulus applied to the
olfactory bulb of rabbit as it was followed decper
in the scnsory corlex where it was found (o
eventually vanish in a sea of intrinsically
dominated activity., Similar behavior has
apparently been observed by Freeman’s group in
other sensory modalities.

‘The preceding remarks suggest that networks
of parametrically coupled logistic maps offer an
effective way to study the functional complexity
of cortical networks in order to understand the
way they perform higher-level functions. Such
higher-level functions are beyond the capabilities
of present day sigmoidal networks, and

.incorporating them in artificial network offers a

way for increasing their processing power and for
widening their scope of application.

2. The Network: The network swdied is
shown in Fig. 1. It consists of a one-
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dimensional array of N parametrically coupled
logistic maps. Parametric coupling means the
nonlinearity, (control or bifurcation parameter)
U of the i-th map is not fixed but is modulated

in time. In the network, fj is modulated by
both extrinsic and intrinsic influences according
to

pi(n) = €(n)gi(n)

. i+N;
o Lo S0 5T e, M

i j=i-Ni
e = €, exp(-an)

Ineq. (1) i = 1,2,..N, the first term represents
the extrinsi¢ (sensory) input to the i-th logistic
processing element or cell, the second term
represents the net intrinsic input to the i-th cell
through feedback from all other cells connected to
it, n is discrete integer time, 2Nj is the number
of logistic cells connected to the i-th cell i.e. the
number of cells falling within a “connection
radius R¢” that is taken to be identical for all
cells, gf(n) = 4(uj()¥1 is the extrinsic
(sensory) input to the i-th cell with state variable
uj(n)e(0,1] being produced in the simulation
conveniently by a sensory logistic map according
w: uj(n+l) = uf uj(n) (1 - uj(n)) with
uj(©) = 0.5 and p being a fixed control
parameter of the i-th stimulus generating logistic
map. Selecting [.tis in [0,4] enables the
production of a wide range of stationary, periodic
(pericd-m) or chaolic patterns uj(n) or any
desired combination of such pattens on i

dépending on the values one selects for ;Lis.

Thus by adjusting the control vector us of the

N stimulus generating logistic cells, a wide
variety of spatio-temporal driving signals can be
generated and applied to the network. The
coupling factor Wj ranges between 0 and oo. For

example wi = O produces gg(n) = 4 which
means the extrinsic contribution when added to
the intrinsic one tends to make K (n) high with
the result that the i-th processing cell would tend
to be chaotic. On the other hand Wj = o° yields
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Fig. 1. Parameuically coupied logistic network
(PCLN) consisting of N bifurcation
(logistic) processing elements or cells.
The network employs: (a) novel
biologically plausible nonlinear (activity)
dependent coupling functions between
cells each representing a netlet and (b) a
biologically plausible gradual transfer of
control over network dynamics from
initially totally = extrinsic  (sensory)
control to totally intrinsic control. The
network can be driven externally by
spatio-temporal inputs provided by the
stimulus  generating network  that
employs an array of uncoupled logistic
maps to conveniently produce a variety
of static, time-periodic, chaotic, or
composite signals made of any mix of
these three-types of signals. The
quantized versions of the coupling
functions used to study the coarse-grain
dynamics of the PCLN (not discussed
here).
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gf (n) = 0, because the state variable uj of the
logistic map is in [0,1]. This means that small
values of wj introduce disorder while larger
values introduce inhibition.  Similarly, the
quantity gij(n) in eq. (1) represents the input
from the j-th cell to the i-th cell; it has a form
similar  to g‘;’ (n), namely gjj(n) =
4[X j(n)]Cij with Cj; being in [0,0] ad
X j(n) is the state variable of the j-th logistic
processing cell of the network -govemed by:
Xj(n+1) = pj(n) (1 - Xj(n)) where uj(n) is
given by eq. (1) and Xj(n) is also in [0,1].

Note the nonlinear dependence of gf(n) on uj(n)
and of gij(n) on Xj(n) serves two purposes.
One, it confines their combined contribution to
Hi(n) to the allowable range [0,4], and second,
the values of wij and Cjj provide control over

the level of excitation/disorder on the one hand or
inhibition on the other, that are injected into the
dynamics of the i-th cell, and hence into the
network as a whole, by the i-th sensory cell or
by the j-th processing cell respectively. The
parameter ¢ in eq. (1) is a positive real constants
whose value determines the speed with which
control over the dynamic of the network is
handed over from initially entirely extrinsic
control fo eventually and entirely intrinsic
control. A value of € , = 1 means that initially
the dynamics of the network are totally controlled
by the extrinsic (sensory) pattem and o0 = O
means there is no fading of the eflect of extrinsic
input.

The behavior of the PCLN was numerically
studied under a variety of conditions and
parameter values and extremely rich behavior was
observed.  Particularly interesting was the
behavior when local connectivity was used where
Nj << N to reflect presumably the dominance of
local inter-connection between netlets of the
cortex. When self-connection of cells was
allowed and the following parameters were used:
R randomly selected in [0,1}, €, =1, o = 0.1,
w; = 0.5, and random coupling coefficients i.e.,
Cij randomly and uniformly selected in [a,b], and
random initial state vector X(0) i.e. X0
randomly and uniformly selected in [0,1], the

network exhibited isolated clusters of activity for
values of the constants a ranging in [0,0.3] and
b~3 which fumnished a mix of chaos and order
inducing coupling functions. The form of
isolated clustering, and the orbits of cells within
clusters, were stimulus specific and independent
of initial state of the network, as desired. The
clustering was relatively rapid occurring usually
within the first 100 iterations depending on the
value of a. Cell orbits of different type i.e.,
fixed-point, period-m, and chaotic can coexist
within a cluster and often the period-m orbits of
cells within well separated clusters were not only
phase-locked but synchronized.  This latter
behavior conforms with synchronized oscillations
of local field potentials observed by several
workers in the brain of cat and monkey and with
Eckhom’s modeling of that behavior in networks
of spiking neurons [16]-{21]. Most interesting is
the isolated clustering which is analogous to the
isolated clusters of brain activity seen in
functional magnetic resonance imaging (fMRI)
and positron emission tomography (PET) images
of subjects subjected to sensory stimulus or
when performing an assigned cognitive or motor
task.

The conceptual similarity of the isolated
clustering behavior in PCLNs and the clustering
of brain activity seen in fMRI and PET: raises an
interesting scientific question. If PCLNs are
valid models of cortical nets then the clusters of
brain activity seen in fMRI and PET should also
exhibit analogous temporal aclivity. Un-
fortunately the time resolution of fMRI and PET
at present is t0o coarse to discemn any temporal
activity within the clusters that light-up because
both measure the change in blood flow to active
brain regions. An increasing number of studies
employing PET and fMRI show however that
different sensory stimuli or cognitive tasks can
“light-up” the same brain spot. This strongly
suggests a role for temporal encoding to enable
differentiation. It would be interesting to see if
future technological advances in functional brain
imaging could provide the needed temporal
resolution to verify the prediction of the PCLN.

3. Conclusion: The generally rich behavior
we observe with PCLNs including the
remarkable specific behaviors described above
have no parallel in sigmoidal neural network, and
apparently also in coupled map lattices and
cellular automata. Therefore we believe that the

52D-3 267




use of PCLNs to model cortical networks and
higher-level brain functions provide a unique tool
for the development of intelligent systems that
can operate in a natural environment where time
varying signatures are the norm and not the
exception.

4. Acknowledgement: I wish to thank G-H
* Lee for writing the Windows program on which
the simulations referred to were carried out. This
research was supported by the Office of Naval
Research under grant no. N00014-94-1-0931.
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SPECIAL NEWS REPORT: SILICON MIMICS LIFE

A Subtler Silicon Cell for Neural Networks

N ature is the model for artificial neural networks. These networks
of processors—either real or simulated on a conventional com-
puter—"learn” from experience by adjusting the strength of their
connections, much like networks of real neurons. Small neural nets
have become commonplace, doing tasks such as predicting how
stock prices may fluctuate and recognizing handwritten characters.
But Nabil Farhat of the University of Pennsylvania, Philadelphia,
thinks he can build a better neural net by making its constituent
neurons even closer to biology.

Neural nets traditionally consist of so-called sigmoidal neurons,
circuits that add up incoming signalsun- 6.8

periodic modulation of the neuron’s electrically excitable membrane,
just as two beams of light from the same source produce a periodic
pattern of light and dark patches when they interfere with each other.
The oscillation modulates the neuron’s response to later inputs.
Conventional digital circuitry, with its arrays of on-off switches,
can't efficiently mimic this kind of behavior. So Farhat has been
combining resistors, capacitors, and other components into so-called
analog circuits, which can adopt any intermediate state between “on”
and “off.” One proof-of-principle design incorporated two capacitors,
which charge up in parallel as incoming signals bxi'd up. Eventually,
one capacitor “breaks down,” allowing

til they reach a fixed threshold and then
fire themselves. Farhat's so-called bifur-
cation neurons, in contrast, switch be- 471}
tween different modes of operation—
between regular and chaotic firing, for

example—depending on subtler fac- a4
rors. These include notjust the valueofa 3
particular train of incoming signals, but = £
also the interaction between many in- *1s7}

coming signals and the neuron’s recent
history. So far, Farhat has made only

current to flow, which switches on a light-
emitting diode. The diode discharges both
capacitors, reversing the breakdown and
allowing the charging to begin again. This
behavior makes the circuit time-sensitive:
Signals arriving when the capacitors have
just been discharged have a different effect
from signals arriving earlier or later.

The latest incarnations of Farhat’s neu-
rons display more complex behavior (see
diagram). When many neural inputs

SOURCE: N. FARHAT

" single neurons, and he hasn’t linked
them together into a complete network.
But his latest simulations suggest, he says,

0 . i, . e,
500 520 540 560 580 600 620 640 660 680 700
Driving Signal Frequency (Hertz)

Nervous behavior. The bifurcation neuron

(spike trains) arrive at the same time, they
interact to generate an electrical oscilla-
tion, which affects the neuron’s firing.

that they could yield neural nets with  switches among many different firing modes, de- Small changes in the frequency of this

more lifelike behavior than has been
seen in networks to date, such as the
ability to see, recognize, and even react to the world in real time.

Whether he will succeed is still an open question, says Daniel
Collobert, a neural net expert at France Telecom. But he notes
that Farhat's bifurcating neuron provides a level of behavioral
complexity “that [artificial] neural networks could not previously
[show], and I guess never will, because of the functional simplicity
of [their] neurons.” :

The neurons in traditional nets sacrifice important informa-
tion, because they know only how many spikes reached them ina
given period, but not when each spike arrived. To an ordinary
neuron, the periodic signal 110110110 (where a 1 is a spike)
would be exactly the same as 101101101.

Yet real neuronal nets, in the brain, capture this timing infor-
mation. A neuron fires because incoming signals cumulatively
depolarize the excitable membrane of the neuron's output device,
the axon. Afterward, there follows a period when the membrane
cannot respond at all to an incoming signal, which gives way to
another slow buildup. A pulse arriving immediately after firing
will have a completely different effect on the output of the neuron
from one that arrives immediately before.

Real neurons also respond differently to signals when they are
correlated than when they arrive separately. Farhat explains that
signals arriving simultaneously through different dendrites produce a

pending on the frequency of the signal it receives.

oscillation, caused by varying input sig-
nals, produce huge shifts in the output
behavior. For instance, oscillation frequencies below about
550 hertz produce periodic firing with two spikes per cycle. Just
above this frequency, the output rapidly changes to chaotic firing.

Farhat and his colleagues are now planning to link such neurons
into a full array using optical signals, which should allow them to
create the dense thicket of interconnections needed for a large
neural net. In a paper to be published in the Journal of Intelligent and
Robotic Systems early next year, Farhat describes a computer simula-
tion that offers a glimpse of how such a network would behave. The
bifurcation neurons seem to form “netlets”—subsets of the neurons
that work together. In an even more recent simulation, Farhat
found that the netlets formed a kind of neuroanatomy, with differ-
ent clusters of netlets responding to stimuli from different sources in
the environment. “That’s exactly the same as people observe when
they look at functional MRI {magnetic resonance imaging] and
PET [positron emission tomography] scans of the brain,” Farhat
says. “Depending on the inputs, the stimulus from the outside, or
the cognitive task that the person is engaged in, we see different
parts of the brain firing.” It’s that kind of complexity, Farhat thinks,
that could make his networks of bifurcation neurons capable of
simple abilities that we take for granted. —Sunny Bains

Sunny Bains is a science and engineering writer in Edinburgh, U K.

mimic some aspects of the brain in so-called
neural nets, networks of “processors” linked by
“synapses”—connections that strengthen or
weaken depending on activity, enabling the
net to learn from experience. But these neu-
ral nets generally aren’t real physical de-
vices—instead, they are simulated ones, run-
ning as software on conventional computers.

www.sciencemag.org ¢ SCIENCE ¢ VOL. 277 * 26 SEPTEMBER 1997

What's more, their neurons are, with few ex-
ceptions (see sidebar), generally much sim-
plified versions of the real thing. Neuro-
morphics, on the other hand, is an effort to
capture some of the richness of actual neurons
in hardware—transistors, capacitors, and re-
sistors, all fabricated onto silicon chips—in

what is called analog VLSI, or simply AVLSL

Besides allowing transistors to operate at
many different voltage levels, neuromorphic
engineers are designing them to serve as both
calculation and memory elements. Work by
Lance Glasser at the Massachusetts Institute of
Technology, and by Mead and his team at
Caltech, has led to the design of a new type of
transistor, the floating gate transistor, which
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